• Daily asset returns r_{i,t} for a liquid universe.
  • Daily VIX return f_{\text{VIX},t} and any other observed factors f_{\ell,t}.

  • Estimate betas (time-series regressions)
    r_{i,t} \;=\; \beta_{i,\text{VIX}}\,f_{\text{VIX},t}\;+\;\sum_{\ell\neq\text{VIX}}\beta_{i,\ell}\,f_{\ell,t}\;+\;\varepsilon_{i,t}.
    Collect all \beta_{i,\cdot} into the loading matrix B and The phrase means: once you’ve run each time‐series regression

r_{i,t} \;=\;\sum_{\ell}\beta_{i,\ell}\,f_{\ell,t}\;+\;\varepsilon_{i,t},

you collect all \beta_{i,\ell} into one matrix

\[ B = \begin{pmatrix} \beta_{1,1} & \beta_{1,2} & \cdots\\ \beta_{2,1} & \beta_{2,2} & \cdots\\ \vdots & \vdots & \ddots \end{pmatrix}, \]

and you form the vector of residuals for each asset

\varepsilon_{i,t}.  Then

\Omega_{\varepsilon} \;=\; \operatorname{Cov}\bigl(\varepsilon_{t}\bigr)

is the N\times N covariance matrix whose (i,j) entry is

\mathbb{E}[\varepsilon_{i,t}\,\varepsilon_{j,t}].