For a loan taken for an amount \(PV\) for \(N\) periods at at an interest rate \(r\) per period, the annuity \(A\) is given as:
\[
\begin{align}
PV &= \sum_{n=0}^N \frac{A}{(1+r)^n} = NA \sum_{n=0}^N \frac{1}{(1+r)^n} \\[12pt] A &= \frac{N \cdot PV}{1-(1+r)^{-N}}
\end{align}
\]
Amortisation Schedule
OpeningPrincipal | LoanDuration | Rate | Annuity | Interest | PricipalRepaid |
---|---|---|---|---|---|
619.00 | 5.00 | 0.07 | 151.78 | 44.57 | 107.21 |
511.79 | 5.00 | 0.07 | 151.78 | 36.85 | 114.93 |
396.86 | 5.00 | 0.07 | 151.78 | 28.57 | 123.20 |
273.66 | 5.00 | 0.07 | 151.78 | 19.70 | 132.07 |
141.58 | 5.00 | 0.07 | 151.78 | 10.19 | 141.58 |